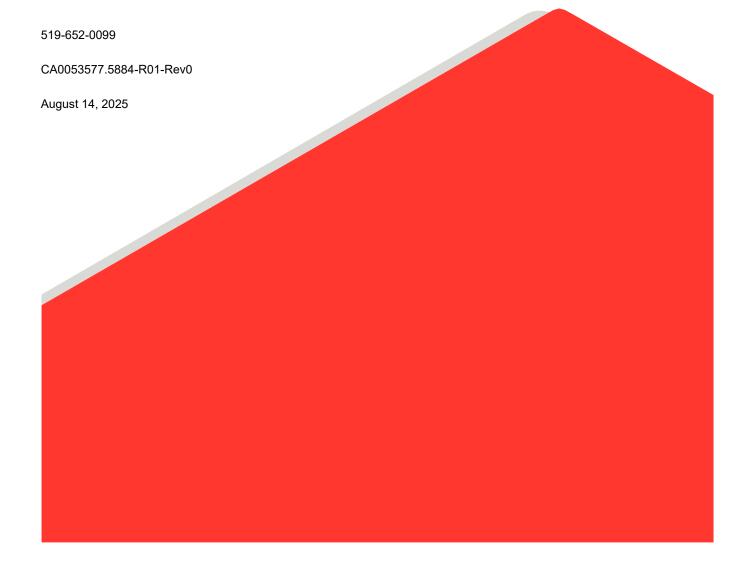


REPORT

Geotechnical Exploration

Decker Creek Culvert Replacement, Thedford, Ontario

Submitted to:


The Municipality of Lambton Shores, by care of Black Creek Engineering Inc.

9577 Port Franks Road Thedford, ON N0M 2N0

Submitted by:

WSP Canada Inc.

309 Exeter Road, Unit 1, London, ON N6L 1C1

Distribution List

1 PDF Copy: Black Creek Engineering Inc.

1 PDF Copy: WSP Canada Inc.

i

Table of Contents

1.0	INTRODUCTION1					
2.0	SITE	DESCRIPTION AND GEOLOGICAL BACKGROUND	1			
3.0	EXPL	ORATION PROCEDURES	2			
4.0	SUBS	URFACE CONDITIONS	3			
	4.1	Soil Conditions	3			
	4.1.1	Asphalt and Variable Fill	3			
	4.1.2	Sandy Silty Clay	4			
	4.1.3	Sandy Clayey Silt (Residual Soil, Extremely Weak Shale)	4			
	4.2	Bedrock Conditions	4			
	4.3	Groundwater Conditions	4			
	4.4	Analytical Testing	5			
5.0	DISC	JSSION	5			
	5.1	Interpreted Design Properties of Foundation Material	5			
	5.2	Culvert Foundation	5			
	5.3	Sliding Resistances	6			
	5.4	Backfill	6			
	5.5	Frost Depth	7			
	5.6	Erosion Protection	7			
	5.7	Lateral Earth Pressures	7			
	5.8	Seismic Considerations	8			
	5.9	Excavations and Groundwater Control	8			
	5.10	Construction Considerations	9			
	5.11	Pavements	9			
	5.12	Corrosivity Conditions	.10			
6.0	GEOT	ECHNICAL INSPECTIONS AND TESTING	.11			
7.0	CLOS	URE	.11			

Important Information and Limitations of this Report

Method of Soil Classification

Lithological and Geotechnical Rock Description Terminology

Abbreviations and Terms Used on Records of Boreholes and Test Pits

List of Symbols

Records of Boreholes

FIGURES

Figure 1: Location Plan

Figure 2: Grain Size Distribution – (CL) Sandy Silty Clay

Figure 3: Plasticity Chart

APPENDICES

APPENDIX A

Rock Laboratory Test Results

APPENDIX B

Rock Core Photographs

APPENDIX C

Analytical Laboratory Test Results

1.0 INTRODUCTION

This report presents the results of the geotechnical exploration and testing program carried out by WSP Canada Inc. (WSP) to support the design of the Decker Creek culvert replacement project in Thedford, Ontario, (referred to hereinafter as "the Site"). The project consists of the replacement of the existing corrugated steel pipe (CSP) culvert with a new open-footing precast concrete box culvert with precast concrete block end walls. The location of the site is shown on the Key Plan, Figure 1. The geotechnical work program was carried out in accordance with our proposed letter 2025CA395884-Rev1 dated April 24, 2025. Authorization to proceed was provided by The Municipality of Lambton Shores (The Municipality) on May 7, 2025.

The purpose of the exploration was to evaluate the subsurface soil, rock, and groundwater conditions at two test locations at the Site and summarize the results in a report providing geotechnical engineering recommendations for design of the proposed works. The preliminary design drawings dated May 14, 2025 provided by Black Creek Engineering Inc. (Black Creek) to WSP indicate that the proposed culvert will be approximately 23 m long, 4 m wide and 3m high. The approximate location of the existing and proposed culvert alignment is shown on the Borehole Location Plan, Figure 1. Based on the proposed profile, the soil cover thickness will be about 1.7 m below the travelled surface of Decker Road (Elevation 207.7 m) to the top of the concrete culvert (Elevation 206.0 m). The existing CSP culvert is assumed to be founded on shale bedrock between Elevation 202.4 m to 202.7 m.

The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. In addition, this report should be read in conjunction with the attached "Important Information and Limitations of This Report". The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

2.0 SITE DESCRIPTION AND GEOLOGICAL BACKGROUND

The site of the proposed culvert replacement is located on Decker Road, about 360 m west of Main Street in Thedford, Ontario. For the purposes of this report, Decker Road is assumed to be orientated in a west-east direction. The culvert alignment is nearly perpendicular to Decker Road and is considered to be oriented in a north-south direction.

The site lies within the physiographic region described in the "The Physiography of Southern Ontario, Second Edition" by Chapman and Putnam¹ as the Huron Fringe. The Huron Fringe is described as a narrow fringe of land along Lake Huron with soils predominantly characterized by boulders, gravel bars, and sand dunes interspersed with swamp lands. Based on the Ontario Department of Mines P.1065 entitled "Quaternary Geology, Southern Ontario, Parkhill Area", the surficial soils in the immediate vicinity of the Site consist primarily of clayey silt till known as St. Joseph till. The site is reportedly underlain by Devonian-age grey limestone and shale of the Hamilton Group. Available water well records in the vicinity of the site indicate bedrock surface varying between about some 5.5 m to 6.7 m below ground surface (mbgs).

wsp

1

¹ L.J Chapman and D.F. Putnam: The Physiography of Southern Ontario, Third Edition. Ontario Geological Survey, Special Volume 2, 1984.

3.0 EXPLORATION PROCEDURES

The field work for the geotechnical exploration was carried out on June 23 and 24, 2025 during which time two boreholes, identified as Boreholes BH-101 and BH-102 were advanced at the approximate locations shown on Figure 1. The table below summarizes the borehole locations, ground surface elevations, and borehole depths.

Book at No	Location	(UTM 17T)	Ground Surface	Borehole Depth (m)	
Borehole No.	Northing (m)	Easting (m)	Elevation (m)		
BH-101	4778845.6	431920.1	207.8	11.0	
BH-102	4778845.1	431910.2	207.7	8.7	

The boreholes were drilled using track-mounted drilling equipment supplied and operated by a specialist drilling contractor licensed by the Ministry of the Environment, Conservation and Parks (MECP). Standard penetration testing and sampling was carried out in all boreholes at suitable intervals of depth using 35-millimetre (mm) inside diameter split spoon sampling equipment with an automatic hammer in accordance with ASTM International standard D1586: "Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils". The samples obtained were brought to our laboratory for further examination and representative laboratory classification testing. The results of the in situ and laboratory testing are provided on the Record of Borehole sheets. The Standard Penetration Test (SPT) 'N' values² indicated on the Record of Borehole sheets and discussed herein are the values measured directly in the field and are unfactored.

Bedrock coring was carried out in borehole BH-102 using NQ sized coring equipment. Bedrock characteristics for Total Core Recovery (TCR), Solid Core Recovery (SCR), Rock quality Designation (RQD), weathering and strength index, discontinuities, and classification data were recorded in the field based on visual examination of the recovered core samples upon extraction from the core barrel. The bedrock samples were photographed (Appendix C) and logged in the field and then placed in appropriate containers, labelled, and transported to our Burlington rock mechanics laboratory for further visual examination and classification, as well as unconfined compressive strength (UCS) testing. The results of the rock laboratory testing are included in Appendix A.

Classification of the rock mass quality of the bedrock with respect to the RQD is described based on Table 4.26 of the Canadian Foundation Engineering Manual (CFEM, 2023) while the strength of the bedrock core samples is based on Table 4.21 of CFEM (2023). The degree of weathering of the bedrock samples and the strength classification of the rock mass based on field identification are described in accordance with the International Society of Rock Mechanics (ISRM, 1985) standard classification system.

Analytical testing was carried out on select soil samples by a certified analytical laboratory (AGAT Laboratories). The analytical testing included analysis of resistivity, soluble chloride, conductivity, pH, and soluble sulphate parameters to evaluate the soils potential for corrosivity to steel and concrete. The results of the analytical laboratory testing on the soil samples are included in Appendix B.

Groundwater conditions were observed in the boreholes throughout the drilling operations. Upon completion of drilling and sampling, the boreholes were backfilled in accordance with the requirements of the Revised Regulations of Ontario (R.R.O) 1990, Ontario Regulation (O.Reg.) 903, as amended, of the Ontario Water

² The SPT 'N' value is defined as the number of blows required by a 63.5-kilogram hammer dropped from a height of 760 mm to drive a split spoon sampler a distance of 300 mm into the soil after having first penetrated 150 mm.

2

Resources Act. The encountered groundwater levels are shown on the Records of Borehole sheets and discussed below.

Members of our engineering staff designated the borehole locations in the field, obtained clearances for underground utilities, monitored the drilling, logged the boreholes, cared for the samples collected and obtained water level measurements after completion of the drilling. The ground surface elevations at the borehole locations were surveyed by WSP and referenced to geodetic datum.

4.0 SUBSURFACE CONDITIONS

The subsurface soil, rock, and groundwater conditions encountered in the boreholes advanced during this exploration and testing program, together with the results of the field and laboratory testing carried out on selected soil and rock samples, are presented on the Record of Borehole sheets and the laboratory test figures following the text of this report. A copy of "Abbreviations and Terms Used on Records of Boreholes and Test Pits", "List of Symbols", and "Lithological and Geotechnical Rock Description Terminology" sheets are also provided to assist with the interpretation of the borehole records. The stratigraphic boundaries shown on the Record of Borehole sheets are approximate as they are inferred from non-continuous sampling, observations of drilling resistance and in situ testing. These indicated stratigraphic boundaries typically represent transitions between soil types rather than exact planes of geological change. In addition, the subsurface conditions should be expected to vary between and beyond borehole locations.

In general, the encountered subsurface conditions consisted of variable fill materials and buried topsoil overlying native deposits of sandy silty clay, sandy clayey silt, limestone and shale bedrock.

4.1 Soil Conditions

4.1.1 Asphalt and Variable Fill

Both of the boreholes were advanced through the pavement structure on Decker Road and encountered about 152 millimetres (mm) of asphalt.

Granular fill materials consisting of sand with varying amounts of silt and gravel were encountered beneath the asphalt at both of the borehole locations. The granular fill was about 0.5 m thick, with samples having water contents of about 4% to 7%. SPT 'N' values recorded within the granular fill ranged from 9 to 11 blows per 0.3 m of penetration, indicating a loose to compact state of compactness.

Cohesive fill materials comprising of sandy silty clay were encountered beneath the granular fill in both of the boreholes. The cohesive fill layers were about 3.1 m to 3.5 m thick and extended to depths of 3.8 to 4.1 mbgs. Organics (pockets of topsoil and rootlets), cobbles, boulders, and construction debris were typically encountered in the cohesive fill soils, with samples having water contents of about 15% to 24%. SPT 'N' values recorded within the cohesive fill ranged from 3 to 27 blows per 0.3 m of penetration, indicating a soft to very stiff consistency.

Underlying the cohesive fill in BH-101, a buried layer of topsoil was encountered. The topsoil layer was about 0.3 m thick and extended to a depth of 4.1 m. The SPT 'N' value recorded in the topsoil was 8 blows per 0.3 m of penetration, indicating a firm consistency. The measured moisture content of a sample of the topsoil layer yielded a water content of about 25%.

4.1.2 Sandy Silty Clay

Cohesive deposits of sandy silty clay were encountered beneath the buried topsoil layer in borehole BH-101. Where fully penetrated, the sandy silty clay was about 1.5 m in thickness. SPT 'N' values recorded within the cohesive deposit ranged from 3 to 8 blows per 0.3 m of penetration indicating a soft to firm consistency. Water contents of the cohesive deposits ranged from about 13% to 30%. A grain size distribution curve for a sample of the sandy silty clay is shown on Figure 2. An Atterberg limits test was conducted on one sample of the sandy silty clay, which indicated a liquid limit of about 29 %, a plastic limit of about 18%, and a plasticity index of about 11%. The results of the Atterberg limits test, as shown on Figure 3, indicate that the material is an inorganic silty clay of low plasticity.

Weathered shale pieces were observed within samples of the sandy silty clay. Although not specifically encountered in the boreholes, cobbles and boulders should be expected in the cohesive strata as these soils are glacially derived and in proximity to the bedrock surface.

4.1.3 Sandy Clayey Silt (Residual Soil, Extremely Weak Shale)

Layers of Sandy Clayey Silt (which is also classified as residual soil, or extremely weak shale) were encountered beneath the sandy silty clay BH-101 and beneath the cohesive fill in BH-102. Borehole BH-101 was terminated within the sandy clayey silt after exploring the stratum for about 5.4 m. Where fully penetrated in BH-102, the sandy clayey silt was about 0.8 m in thickness. SPT 'N' values recorded in the sandy clayey silt ranged from 51 blows per 0.3 m of penetration to 82 blows per 0.25 m of penetration, suggesting a hard state of compactness. Samples of the sandy clayey silt yielded water contents of about 8% to 10%.

4.2 Bedrock Conditions

Extremely weak shale bedrock was encountered at varying depths in boreholes BH-101 and BH-102. Actually at BH-101 auger drilling and SPT sampled was completed to the end of the borehole at 11.0 m below grade with no refusal to drilling. At BH-102 the bedrock cores encountered slabs of fresh limestone intercalated with layer of grey porous and weak shale and layers of dense residual soils, Borehole BH-101 and BH-102 were terminated in very dense sandy clayey silt and the extremely weak shale after exploring the layer for about 2.8 to 5.4 m. Where fully penetrated in borehole BH-102, the extremely weak shale layer was about 0.8 m thick.

Layers of Limestone and shale bedrock were encountered between the extremely weak shale layers in borehole BH-102 at a depth of 4.9 m. The layers generally consisted of grey, porous, slightly weathered, medium to very strong limestone to weak shale and was about 1.0 m thick. One UCS test was carried out on a sample of the limestone bedrock, indicating a UCS of 189.8 MPa.

The rock quality designation (RQD) ranged from 54% to 71% with an overall average value of 62%, indicating a rock mass of Fair quality as per Table 4.26 of the CFEM (2023).

4.3 Groundwater Conditions

Groundwater levels were observed in the boreholes during drilling as indicated on the Record of Borehole sheets. Groundwater was encountered in borehole BH-102 at a depth of 3.0 mbgs during drilling or about Elevation 204.7 m. Borehole BH-101 remained dry during drilling.

Groundwater levels should be expected to fluctuate seasonally and in response to significant precipitation events and adjacent Decker Creek water levels.

4.4 Analytical Testing

Two soil samples (one cohesive fill sample and one native sandy clayey silt) were collected and submitted for analyses of parameters used to assess corrosion potential to buried concrete and steel. A summary of the results of the analyses is presented below and the detailed test results and the Certificate of Analysis are presented in Appendix B.

Borehole,	Parameters						
Sample I.D.	Soluble Chloride (µg/g)	Sollinie Sillinnate (IId/d) he		Electrical Conductivity (mS/cm)	Resistivity (ohm-cm)		
BH-101 Sa-5	96	58	8.21	0.30	3320		
BH-102 Sa-7	76	363	8.37	0.64	1570		

5.0 DISCUSSION

This section of the report provides our interpretation of the factual geotechnical data obtained during the field work and it is intended for the guidance of the design engineer. Where comments are made on construction, they are provided only to highlight those aspects which could affect the design of the project. Contractors bidding on or undertaking the works should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction, and make their own independent interpretation of the subsurface information provided as it affects their proposed construction means and methods, equipment selection, scheduling, pricing, and the like.

Our professional services for this assignment address only the geotechnical (physical) aspects of the subsurface conditions at this site. The geo-environmental (chemical) aspects, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this report and have not been addressed.

5.1 Interpreted Design Properties of Foundation Material

Based on the results of the boreholes, it is anticipated that the foundation material will consist of the encountered weathered bedrock and very dense to hard residual sandy clayey silt. In consideration of the weathered conditions and joint characteristics described above, the following interpreted design properties are recommended for the weathered bedrock mass and the sandy clayey silt:

- Unit weight (Y)= 21 kN/m³
- Effective friction angle (Φ') = 34°

5.2 Culvert Foundation

It is understood that a new open-footing precast concrete box culvert with precast concrete block end walls will be replacing the existing CSP culvert. The proposed culvert is 22.5 m long, 4.42 m wide, and 3.05 m high. Based on the proposed profile, the soil cover thickness will be about 1.7 m below the travelled surface of Decker Road (Elevation 207.7 m) to the top of the concrete culvert (Elevation 206.0 m).

The open-footing culvert will be founded within bedrock, or hard sandy clayey silt and should be embedded below the creek bed and below any anticipated scour depth. In the absence of a site-specific scour hazard study a minimum of 600mm embedment against scour depth should be considered.

For design purposes, a factored geotechnical resistance at Ultimate Limit State (ULS) of 200 kilopascals may be used for a strip footing based on a minimum footing width of 1.0 m and a minimum embedment below the bottom of the creek of 0.6 m.

This above ULS resistance is valid for vertical loads only and it decreases significantly in the presence of load inclination. Preliminarily, the reduction factor of $(1-\theta/\Phi')^2$ would apply $(\theta = \text{inclination of applied load from vertical,}$ and $\Phi' = \text{effective friction angle of the foundation material})$. However, the ULS resistance can be increased with increase of the embedment and foundation width. Preliminarily, for the given 600 mm embedment, the rate of increase of the factored resistance is about 4% for every 0.1 m of footing width increase. In addition, the factored resistance will increase by approximately 22% for every 0.3 m of embedment increase. If required, WSP can assist with more detailed geotechnical design.

The net geotechnical reaction at the Serviceability Limit State (SLS) defined based on 25 millimetre acceptable settlement for the footing founded on the bedrock or hard residual soils at this site will exceed the ULS resistance and as such the SLS condition is not a factor in the design.

Once prepared, the subgrade should be inspected by the geotechnical engineer.

For leveling purposes and immediate protection of the exposed subgrade, it is recommended a minimum of 75 mm thick layer of lean concrete (mud mat). The use of uniform sand (mortar sand) for fine-leveling of the precast panes should be avoided in consideration of the risk of scour, unless the embedment material against the footing is scour proof.

5.3 Sliding Resistances

The resistance to lateral forces/sliding resistance between the culvert base and founding rock should be calculated in accordance with CFEM (2023). The angle of interface friction, δ , and the unfactored coefficient of friction, tan δ , may be taken as 20 degrees and 0.36, respectively.

5.4 Backfill

Any existing topsoil, cohesive fill, organics, wet, or deleterious fill materials excavated from the site are not considered suitable as engineered backfill. The upper granular fill recovered from the pavement structure is suitable for reuse as general backfill for the road embankment below the future pavement structure, provided that is carefully sorter and stored separately from the general excavated soils.

Backfill for the culvert and end walls should consist of free-draining, non-frost susceptible granular materials such as OPSS Granular B or Granular A, placed in maximum 300 mm thick loose lifts and uniformly compacted to at least 98 per cent of SPMDD. Heavy compaction equipment should not be used immediately adjacent to the abutment walls or walls and roof of the culvert. The height of backfill adjacent to the culvert walls should be maintained as equal as possible on both sides of the culvert during all stages of backfill placement. The height of the backfill on each side of the culvert should differ by no more than 500 mm at any time.

The excavation for the culvert should exceed the width of the culvert by at least 1.5 metres on each side to allow for good workmanship and effective compaction of the fill.

Select Subgrade soils and recovered compactable soils from the excavation should be used to retore the pavement subgrade elevation. All this backfill material should be at suitable moisture contents to achieve the specified degree of field compaction. Materials should not be considered acceptable as backfill when the

placement water content exceeds the optimum water content (as determined by the standard Proctor compaction testing ASTM International D698) by more than about 2 to 4 per cent. Further, material that is more than 3 per cent dry of the optimum water content should be wetter during compaction to reduce post-construction settlements or should not be used.

Inspections and field density testing should be carried out by qualified geotechnical personnel during all fill placement operations to ensure that appropriate materials are used and that adequate levels of compaction have been achieved.

5.5 Frost Depth

In accordance with the Ontario Provincial Standard Drawings (OPSD.3090.101) the design frost depth below the ground surface for the general area is estimated to be 1.0 m. Ideally, the culvert footings should be placed below the frost penetration, measured from the bottom of the creek. If the creek water level is expected to maintain a permanent low water level, the actual frost penetration may be less than stated above. Also, the encountered very dense to hard condition of the foundation material is likely to be less susceptible to frost heave. Therefore, if some movement due to potential frost heave can be tolerated, shallower foundations may be considered, but not less than 600 millimetres below the bottom of the creek.

To protect the pavement structure due to the frost penetration, frost tapers should be implemented as per OPSD 803.010.

5.6 Erosion Protection

Erosion protection should be provided at the culvert inlet area. Typically, rock protection can be provided over all surfaces with which culvert water is likely to be in contact. Treatment at the outlet should be in accordance with OPSD 810.010. A vegetation cover should be established on all other exposed earth surfaces to protect against surficial erosion in general accordance with OPSS 804.

5.7 Lateral Earth Pressures

Subsurface walls and temporary support systems that may be installed as part of this project will be subjected to unbalanced earth pressures and must be designed to resist a pressure that can be calculated based on the following equation:

$$P = K[Y(h-h_w)+ Y'h_w + q] + Y_wh_w$$

Where: P = horizontal pressure at depth

h = depth of soil from grade to top of footing (m)

K = earth pressure coefficient

H_w = depth below groundwater level (m)

Y = bulk unit weight of soil (kN/m³)

Y' = submerged unit weight of the exterior soil (kN/m³)

 $Y_w = unit weight of water (kN/m³)$

q = total surcharge loading from adjacent equipment and/or materials (kPa) (kN/m²),

In addition to the above earth pressures, the increase of the earth pressure due to the dynamic compaction should be considered as per CHBDC (2019).

The groundwater elevations behind the culvert wall are expected to vary seasonally and considerably from low water to high groundwater that may raise to near the base of the road subgrade. Wall drains as per OPSD 803.010 should be provided at the level just above the anticipated long-term, or average water level in the creek.

The following table summarizes estimated soil parameter values recommended for use in the design of engineered backfill behind subsurface walls:

Soil Type	Bulk Soil Unit Weight* (kg/m³)	Angle of Internal Friction (°)	Coefficient of Active Pressure (Ka)	Coefficient of Passive Pressure (Kp)	Coefficient of At-Rest Pressure (Ko)
Granular A (OPSS 1010)	2,100	35	0.27	3.69	0.43
Granular B Type I (OPSS 1010)	2,000	33	0.30	3.39	0.46

Saturated unit weights may be calculated by multiplying the bulk unit weights by 1.1; buoyant unit weights may be calculated by subtracting 1,000 kg/m³ from the saturated unit weights. Hydrostatic pressures should be added where buoyant unit weights are assumed.

For unyielding, relatively rigid structures as the proposed culvert, the at-rest lateral earth pressure coefficients (Ko) should be used for design.

5.8 Seismic Considerations

Based on the results of the exploration, seismic Site Class C is appropriate for this site. The site classification for seismic response presented in Table 4.1.8.4.-B of the 2024 Ontario Building Code relates to the average properties of the upper 30 m of support strata. The information obtained in the geotechnical field exploration was gathered from the upper 11 m. If required, an upgrade of the seismic class may be possible subject to further confirmation of dynamic soil and rock properties for the required depth of 30 m.

5.9 Excavations and Groundwater Control

All temporary excavations should be carried out in accordance with the latest edition of the Occupational Health and Safety Act and Regulations for Construction Projects (OHSA). The OHSA regulations governing excavation support and maximum side wall inclinations apply to excavations extending to depths of greater than 1.2 m below the adjacent ground surface.

Based on the results of the exploration, excavations for the proposed culvert replacement will encounter granular fill, cohesive fill, buried topsoil, firm to soft native sandy silty clay, hard native sandy clayey silt (weathered bedrock), and bedrock.

The encountered fill materials and buried topsoil, may be classified as Type 3 soils if dewatered. In the presence of seepage, the soils will degrade to Type 4.

The hard clayey silt and weathered bedrock should be classified as Type 2 soils.

In all cases, the OHSA soil type categories are based on generalized ground behaviour conditions with respect to the need for worker protection and compliance with the Act. Further, layered soil types or construction staging of excavations can change the OHSA categorization that might apply. During construction, the exposed ground should be observed by experienced geotechnical personnel to confirm the OHSA classification that will apply.

^{2.} All granular compacted to at least 98% of the SPMDD

Stockpiling of soil beside the excavation/adjacent to the trench should be avoided to reduce the potential for instability of the open cut. The weight of the stockpiled soil could lead to basal instability of braced excavations or slope instability of unsupported excavations. Any stockpiles of excavated materials should be set back from the edge of the excavation by a lateral distance at least equal to the excavation depth.

Based on the subsurface soil and groundwater conditions encountered in the boreholes and the anticipated depths of the excavations shown on the design drawings, it is considered that the proposed works for the culvert replacement can be done using conventional open cut and supported excavation techniques provided that surface water and groundwater are adequately controlled.

Excavation within the bedrock may require specialized rock excavation tools and equipment.

Care should be taken to direct all surface water away from excavations. Groundwater seepage should be relatively minor within the anticipated excavation depths above the creek water level. Nevertheless, It is anticipated that the excavations should be below the groundwater level, therefore some form of proactive dewatering system or groundwater control measures will be required. Groundwater seepage into the excavation is also anticipated at or below the creek water level and some form of cofferdam system will be required. It is understood that a sandbag cofferdam system will be constructed in general accordance with OPSD. 221.020. Groundwater inflows should be controlled by conventional temporary dewatering methods. The groundwater should be lowered to at least 0.5 m below the underside of footing elevations. Depending on the time of construction, seasonal variation potentially resulting in groundwater levels higher than those encountered during the exploration should be expected. The contractor should be solely responsible for selecting and implementing appropriate dewatering measures.

5.10 Construction Considerations

Adequate support should be provided for any existing or proposed infrastructure which may be located within the zone of influence of the excavations as defined by a line drawn upwards and outwards from the base of the excavation at an inclination of 1 horizontal to 1 vertical.

Care should be taken during construction to avoid disturbance of the founding soils. All existing fill, topsoil, organics, and any soft, excessively wet, or loose soils should be stripped from the proposed founding areas prior to placement of the open-footing culvert.

Should trench liner boxes be used to reduce the lateral extent of the excavations, it should be noted that the box only provides protection for the workmen once in place. The liner box does not restrict movement of the excavation walls and any voids between the excavation wall and the trench liner box should be filled immediately to reduce the potential for loss of ground and support of adjacent utilities, roadway pavements, completed works, and the like.

5.11 Pavements

Prior to constructing any new or replacement pavement structures at the site, all uncontrolled fill, softened, loosened, organic, and/or otherwise deleterious materials should be removed from within the limits of the proposed pavements. Prior to placing Granular B subbase, the exposed subgrade should be heavily proof rolled with a non-vibratory steel wheel roller under the direction of the geotechnical engineer. Any excessively softened or loosened areas identified during this operation should be subexcavated and backfilled with approved OPSS granular material uniformly compacted to at least 98 per cent SPMDD.

The new pavement should be tapered to match the existing road structure to reduce the risks of localized damage along the construction joint.

Based on discussions with Black Creek and the Municipality, and as shown on the provided Proposed Plan & Profile Drawings, it is understood that the following pavement structure thicknesses are proposed:

Pavement Component	Design Thickness (millimetres)
x2 lifts of HL4 asphalt	100
Granular A (crushed) Base	150
Granular B Type II Subbase	300

The above-noted pavement structure is not intended to support heavy construction traffic. Depending on the actual types of construction equipment used and the prevailing weather conditions during construction, additional Granular B may be required to accommodate the construction traffic.

The Granular A base and Granular B subbase should be placed in maximum 300-millimetre thick loose lifts and uniformly compacted to at least 100 per cent of SPMDD in accordance with the current OPSS requirements and municipal standards. Short perforated stub drains should be provided at all catchbasins. All new catchbasins should be connected to a suitable hydraulic outlet. The subgrade surface should be sloped to promote drainage and prevent the build-up and stagnation of pore water within the granular base.

The asphaltic materials should be produced, placed and compacted in accordance with the current OPSS requirements and municipal standards. The asphalt should be compacted to at least 97% of the material's Maximum Relative Density (MRD) as per municipal standards. Milled notches the depth of the surface course by 500 mm wide should be provided where the new pavements abut existing pavements and care should be taken to properly tack coat all butt joints and milled surfaces.

Care should be taken to ensure that construction and/or through traffic does not adversely impact the subgrade, roadway granulars and placement of the asphaltic materials. The pavement structure noted above is based on the assumption that construction will take place under dry weather and subgrade conditions. If the construction is not carried out during dry weather conditions, it may be necessary to increase the recommended thicknesses of the pavement structure and the geotechnical engineer should be allowed to re-evaluate the structure and construction requirements.

5.12 Corrosivity Conditions

One sample of the cohesive fill and one sample of the native sandy clayey silt was submitted to an analytical laboratory; the suite of parameters tested is intended to allow the design engineer to assess the requirements for the appropriate type of cement / concrete to be used in construction and the need for corrosion protection of steel elements. The results of analytical tests are presented on the Certificate of Analysis in Appendix A and summarized in Section 4.4.

For potential sulphate attack on concrete, the results of the soil analysis were compared to Table 3 in CSA A23.1:24. The sulphate concentration was about 58 to 363 micrograms per gram, which is within the exposure class S-3 "Moderate" and would be considered negligible according to Table 7.2 of the MTO Gravity Pipe Design Guidelines (2014).

The resistivity results indicate that the soil corrosiveness for the sample of the native sandy clayey silt is severe (R value less than 2,000 ohm-cm) and moderate (R value is between 2,000 and 4,500 ohm-cm) for the sample of

the cohesive fill (R value as per Table 3.2 of the MTO Gravity Pipe Design Guidelines (2014). Further, the measured pH is about 8.21 to 8.37. According to the MTO Gravity Pipe Design Guidelines (2014) a pH greater than 8.5 is considered strongly alkaline; both of which are indicative of an increased potential for corrosion. It should be noted that the water levels in the area are subject to seasonal fluctuations and variations due to the precipitation events and the soil/water chemistry could also be variable.

These recommendations are provided as guidance only; the structural designer should take the results of the laboratory testing and the potential for corrosion into consideration as part of the materials selection and design life of the casing pipe and appurtenances.

6.0 GEOTECHNICAL INSPECTIONS AND TESTING

During design, it would be beneficial for WSP to review the design drawings and specifications for consistency with the recommendations provided in this report. A regular program of geotechnical inspections and materials testing should be carried out during construction to confirm that the conditions being encountered are consistent with the results of the boreholes, to confirm that the intent of the recommendations provided are being met and that the various project and material specifications are being consistently achieved.

7.0 CLOSURE

We trust that this report is sufficient for your immediate requirements. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact the undersigned.

Signature Page

WSP Canada Inc.

Prepared BY:

Mark Demelo, P.Eng. *Geotechnical Engineer*

Reviewed BY:

Dan Dimitriu, Ph.D., P.Eng.

Sr. Principal Geotechnical Engineer

MD/DD/ms/al

 $https://wsponlinecan.sharepoint.com/sites/ca-ca0053577.5884/shared \ documents/06. \ deliverables/ca0053577.5884-rpt-rev0-geotech_exploration_14aug2025.docx$

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: WSP Canada Inc. (WSP) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to WSP by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. WSP cannot be responsible for use of this report, or portions thereof, unless WSP is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, WSP may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to WSP. The report, all plans, data, drawings and other documents as well as all electronic media prepared by WSP are considered its professional work product and shall remain the copyright property of WSP, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of WSP. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to WSP by the Client, communications between WSP and the Client, and to any other reports prepared by WSP for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. WSP can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, WSP does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that WSP interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

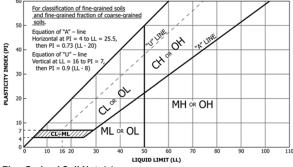
Sample Disposal: WSP will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. WSP should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, WSP should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for WSP to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that WSP be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that WSP be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. WSP takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.


METHOD OF SOIL CLASSIFICATION

The WSP Canada Soil Classification System is based on the Unified Soil Classification System (USCS) (after ASTM D2487)

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	$Cu = \frac{D_{60}}{D_{10}}$			$Cc = \frac{(D_{30})^2}{D_{10}xD_{60}}$		Organic Content 6,9	USCS Group Symbol ^{3,5,7}	Primary Group Name ²															
		of is nm)	Clean Gravels with <5%	Well Graded		≥4 (ar	nd)	≥1 to	≤3		GW	Well-graded GRAVEL ^{4,6}															
(ss	.5 mm)	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	fines ³ (by mass)	Poorly Graded		<4 (and/	or)	<1 or	>3		GP	Poorly graded GRAVEL ^{4,6}															
by ma	SOILS an 0.07	GRAY 50% by parse fi er thar	Gravels with >12%	Below A Line			n/a			GM	SILTY GRAVEL ^{4,6}																
3ANIC t <30%	VINED Gertha	(> CC larg	fines ³ (by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL ^{4,5,6}															
INORGANIC (Organic Content <30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	of is mm)	Clean Sands with <5%	Well Graded		≥6 (a	nd)	≥1 to	≤3	350 70	sw	Well-graded SAND ^{6,8}															
ganic (COARS by ma	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mr	fines ⁷ (by mass)	Poorly Graded		<6 (and	or)	<1 or	>3		SP	Poorly graded SAND ^{6,8}															
Ö.	(>50%	SAN 50% by parse fr	Sands with >12%	Below A Line			n/a				SM	SILTY SAND 6,8															
		(?) Smal	fines ⁷ (by mass)	Above A Line			n/a				sc	CLAYEY SAND ^{5,6,8}															
Organic	0.11			Labaustaus			Field Indic			Organic	USCS	D.:															
or Inorganic	Soil Group	Type of Soil		Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter (mm)	Toughness (of 3 mm thread)	Content B,H	Group Symbol ^A	Primary Group Name ^A															
		,	SILTS (Nonplastic or Pl and LL plot below A-Line on Plasticity Chart below)	Liquid Limit	Rapid	None to Low	Dull to None	3 to >6	Low/can't roll 3 mm	<15%	ML	SILT ^H															
	mm)	SILTS (Nonplastic or Pland LL pl		<50 ^D	None to Slow	Low to Medium	Dull to Slight	3 to 6	Low	15% to 30%	OL	ORGANIC SILT															
y mass	LS			SIL (Nong or Pl an elow A	Liquid Limit	None to V.Slow	Low to Medium	Slight	3 to 6	Low to Medium	<15%	МН	ELASTIC SILTH														
NIC 30% by	iD SOI		Pas P	o d l se	≥50 ^D	None	Medium to High	Dull to Slight	1 to 3	Low to Medium	15% to <30%	ОН	ORGANIC SILT														
NORGA	INORGANIC (Organic Content <30% by mass) FINE-GRAINED SOILS 250% by mass is smaller than 0.075	FINE-GRAINED SOILS (≥50% by mass is smaller than 0.075 mm)	FINE-GRAINE	FINE-GRAINE 250% by mass is small	FINE-GRAINE >50% by mass is small	FINE-GRAINE ≥50% by mass is small	FINE-GRAINE ≥50% by mass is small	FINE-GRAINE	FINE-GRAINE ≥50% by mass is small	FINE-GRAINE by mass is small	FINE-GRAINE by mass is small	FINE-GRAINE	FINE-GRAINE	GRAINE is small	GRAINE is small	GRAINE s is smal	,	e A- nart	Liquid Limit	None to Medium Slow	Medium to High	Slight to Shiny	1 to 3	Medium	<15%	CL	LEAN CLAY A,E,F,G,H
- Ganic O														CLAYS L plot <u>abov</u>	ot <u>abov</u> sticity Cl w) ^A	<50 ^D	None to V.Slow	Medium to High	Slight to Shiny	1 to 3	Medium	15% to <30%	OL	ORGANIC CLAY ^{E,F,G}			
Ö.										770 -	(Pl and LL plot above A- Line on Plasticity Chart below) A	Liquid Limit	None	High to V.High	Shiny	<1	High	<15%	СН	FAT CLAY E,F,G,H							
		Ę	(Pl an Line	(Pl an Line	(Plar Line	≥50 ^D	None	High	Shiny	<1 to 1	High	15% to <30%	ОН	ORGANIC CLAY ^{E,F,G}													
NIC S.S.	>30% 		mineral soil tures	shrinkage	weight, possibly spongy. Some water may squeeze from sample. Some may occur on air drying. Sand fraction may be visible. Low to high cy. Thread weak near plastic limit. Low to medium dry strength.			30% to <75%	SILTY PEAT, SANDY PEAT																		
HIGHLY ORGANIC SOILS	Peat and mineral s mixtures Predominantly pe may contain som mineral soil, fibrous amorphous pea		tain some il, fibrous or			ingy. Much water squeezes from sample. Shrinks considerably on air, very high water content). Plant structure identiable to altered.			75% to 100%	РТ	PEAT																

Coarse-Grained Soil Note(s):

- 1. Based on the material passing the 75 mm sieve.
- If field sample contains or drilling observations indicate cobbles or boulders or both, add, "with cobbles" or "with cobbles and boulders". Include notes on the depth(s) encountered, and sizes if possible.
- $\textbf{3.} \quad \text{Gravels with 5\% to 12\% fines require dual symbols:}$
 - (GW-GM) Well-graded GRAVEL with silt,
 - (GW-GC) Well-graded GRAVEL with clay,
 - (GP-GM) Poorly graded GRAVEL with silt,
 - (GP-GC) Poorly graded GRAVEL with clay.
- **4.** If soil contains ≥15% sand, add "with sand" to Group Name.
- If fines classify as CL-ML, use dual symbol (GC-GM) or (SC-SM) for Group Symbol.
- 6. If the soil has an organic content (OC) 15%≤OC<30% the prefix "Organic" should be added before the Group Name. If the soil has an organic content 3%≤OC<15% add "with organic fines" to Group Name. If the soil contains >0% to ≤3% organics, the descriptor "trace organics" may be added.
- **7.** Sands with 5% to 12% fines require dual symbols:
 - (SW-SM) Well-graded SAND with silt,
 - (SW-SC) Well-graded SAND with clay,
 - (SP-SM) Poorly graded SAND with silt,
 - (SP-SC) Poorly graded SAND with clay.
- 8. If soil contains ≥15% gravel, add "with gravel" to Group Name.

Fine-Grained Soil Note(s):

- A. If Atterberg limits plot above the A-line but in the 'hatched' area on the plasticity chart, soil is a (CL-ML) SILTY CLAY.
- If the soil contains >0% to ≤3% organics, the descriptor "trace organics" may be added.
- C. If fine-grained materials are nonplastic (i.e., a plastic limit (PL) cannot be measured), soil is a (ML) SILT.
- D. If soil has a liquid limit (LL) >30% to <50%, the term 'medium plasticity' may be included in the description, but the Group Name/Symbol is not changed.
- E. If soil contains 15% to <30% +No.200, add "with sand" or "with gravel".
 F. If soil contains ≥30% +No.200 mainly sand, add "Sandy" to Group Name.
- G. If soil contains ≥30% +No.200 mainly gravel, add "Gravelly" to Group Name.
- H. If the soil has an organic content (OC) 3%≤OC<15% add "with organic fines" to Group Name.</p>

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICLE SIZES OF CONSTITUENTS					
Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)		
BOULDERS	Not Applicable	>300	>12		
COBBLES	Not Applicable	75 to 300	3 to 12		
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75		
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)		
SILT/CLAY Classified b		<0.075	< (200)		

GRADATIONAL COMPONENT TERMS

% (by mass)	Term
≤ 5	Use "trace"
> 5 to ≤ 12	Use "few"
> 12 to <30	Use "little"
≥ 30 to <50	Use "some"
≥ 50	Use "mostly"

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_i), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd:
The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH: Sampler advanced by hydraulic pressure PM: Sampler advanced by manual pressure WH: Sampler advanced by static weight of hammer WR: Sampler advanced by weight of sampler and rod

SAMPLES

AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven, pushed tube sampler, or geoprobe macro-core – note size
DS	Denison type sample
FS	Foil Sample
GS	Grab Sample
МС	Modified California Samples – note sample diameter and hammer weight
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split-spoon sampler (50 mm OD); larger sizes use MC
ST	Slotted tube
ТО	Thin-walled, open – note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

Term

w	water content				
PL, w _p	plastic limit				
LL, w _L	liquid limit				
С	consolidation (oedometer) test				
CHEM	chemical analysis (refer to text)				
CID	consolidated isotropically drained triaxial test ¹				
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹				
D _R	relative density (specific gravity, Gs)				
DS	direct shear test				
GS	specific gravity				
M	sieve analysis for particle size				
MH	combined sieve and hydrometer (H) analysis				
MPC	Modified Proctor compaction test				
SPC	Standard Proctor compaction test				
OC	organic content test				
SO ₄	concentration of water-soluble sulphates				
UC	unconfined compression test				
UU	unconsolidated undrained triaxial test				
V (FV)	field vane (LV-laboratory vane test)				
γ	unit weight				

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

NON-COHESIVE (COHESIONLESS) SOILS

Compactness²

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

- 1. SPT 'N' in general accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

COHESIVE SOILS Consistency

Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
<12	0 to 2
12 to 25	2 to 4
05 1 50	4.1.0

- Very Soft Soft Firm 25 to 50 4 to 8 50 to 100 8 to 15 Stiff Very Stiff 100 to 200 15 to 30 Hard >200 >30
- SPT 'N' in general accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.
- SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content

Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
_	3.1416	w w⊢or LL	water content liquid limit
π In x	natural logarithm of x	w _p or PL	plastic limit
	x or log x, logarithm of x to base 10	w _p or PI	plastic infit plasticity index = $(w_l - w_p)$
log ₁₀	acceleration due to gravity	NP	nonplastic
g t	time	W _s	shrinkage limit
	ume	l _L	liquidity index = $(w - w_p) / I_p$
		I _C	consistency index = $(W - W_p) / I_p$
		e _{max}	void ratio in loosest state
		e _{min}	void ratio in densest state
		I _D	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN	.5	(formerly relative density)
2/	shear strain	(b)	Hydraulic Properties
$\stackrel{\gamma}{\Delta}$		h	hydraulic head or potential
	change in, e.g. in stress: $\Delta \sigma$ linear strain		rate of flow
3	volumetric strain	q	
εv		V	velocity of flow
η	coefficient of viscosity	į	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ,	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
$\sigma_1, \sigma_2, \sigma_3$		(0)	Canadidation (and dimensional)
	minor)	(c) C₀	Consolidation (one-dimensional)
	man atrona ar actahadral atrona	Cc	compression index
σoct	mean stress or octahedral stress	0	(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C_r	recompression index
τ	shear stress	0	(over-consolidated range)
u	porewater pressure	C _s	swelling index
E	modulus of deformation	Cα	secondary compression index
G K	shear modulus of deformation	m _v	coefficient of volume change coefficient of consolidation (vertical
K	bulk modulus of compressibility	C _V	direction)
		Ch	coefficient of consolidation (horizontal
			direction)
		T_v	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ'_{p}	pre-consolidation stress
(a)	Index Properties	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
$\rho(\gamma)$	bulk density (bulk unit weight)*		
ρα(γα)	dry density (dry unit weight)	(d)	Shear Strength
$\rho_{\rm w}(\gamma_{\rm w})$	density (unit weight) of water	τ_p , τ_r	peak and residual shear strength
$ ho_s(\gamma_s)$	density (unit weight) of solid particles	φ′ δ	effective angle of internal friction
γ'	unit weight of submerged soil	δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = $tan \delta$
D_R	relative density (specific gravity) of solid	C'	effective cohesion
	particles (D _R = ρ_s / ρ_w) (formerly G _s)	c_u , s_u	undrained shear strength (ϕ = 0 analysis)
е	void ratio	р	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p′	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
		qu	compressive strength (σ ₁ - σ ₃)
		St	sensitivity
* Dens	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	e $\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
	eration due to gravity)		
	÷ */		

PROJECT: CA0053577.5884

1:50

RECORD OF BOREHOLE: BH101

SHEET 1 OF 2

CHECKED: DB

LOCATION: N 4778845.56; E 431920.13 BORING DATE: June 23, 2025 DATUM: Geodetic SPT/DCPT HAMMER: MASS, 64kg DROP, 760mm DRILL RIG: Dietrich D50 HAMMER TYPE: AUTOMATIC DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ BLOWS/0.3m STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW Wp I GRAIN SIZE DISTRIBUTION (%) (m) GROUND SURFACE GR SA SI CL 207.79 ASPHALT (150 mm) 0.00 0.15 FILL - SAND and GRAVEL, some silt; brown; compact 1A SS 11 0 FILL - Sandy SILTY CLAY, trace to some gravel; mottled brown; firm to stiff 1B 0 2 SS 0 S:CLIENTSITHE_MUNICIPALITY_OF_LAMBTON_SHORES/DECKER_CREEK_CULVERT/02_DATA/GINT/DECKER_CREEK_CULVERT.GPJ_GAL-MIS.GDT_8/5/25_MK May 2025 ss 9 3 0 FILL - Sandy SILTY CLAY, trace gravel; grey; soft 4A SS 0 3 4B FILL - Sandy SILTY CLAY, some gravel, with brick pieces and organics; black; soft to stiff SS 11 CHEM 5 TOPSOIL - CLAYEY, with rootlets and organics; black; firm 3.81 6A 0 203.68 SS 8 (CL) Sandy SILTY CLAY, with weathered 6B 0 shale pieces, trace gravel, organics, fossils; grey; firm to soft o Hollow Stem Auger SS 1 32 44 23 (CL-ML) Sandy CLAYEY SILT; grey, friable (RESIDUAL SOIL); hard SS 61 SS 9 51 9 SS 59/ 0.15 10 CONTINUED NEXT PAGE 002 DEPTH SCALE LOGGED: MD

PROJECT: CA0053577.5884

1:50

RECORD OF BOREHOLE: BH101

SHEET 2 OF 2

CHECKED: DB

LOCATION: N 4778845.56; E 431920.13

BORING DATE: June 23, 2025 DATUM: Geodetic SPT/DCPT HAMMER: MASS, 64kg DROP, 760mm DRILL RIG: Dietrich D50 HAMMER TYPE: AUTOMATIC DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ BLOWS/0.3m NUMBER STANDPIPE TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH OW. Wp -GRAIN SIZE DISTRIBUTION (%) (m) GR SA SI CL --- CONTINUED FROM PREVIOUS PAGE ---10 (CL-ML) Sandy CLAYEY SILT; grey, friable (RESIDUAL SOIL); hard Hollow Stem Auger ss 56/ 0.15 11 END OF BOREHOLE Note(s): GTA-BHS 005 S.;CLIENTS\THE_MUNICIPALITY_OF_LAMBTON_SHORES\DECKER_CREEK_CULVERT\02_DATA\GINT\DECKER_CREEK_CULVERT\03-GPJ GAL-MIS\03-GDT 8/5/25 MK May 2025 1. Borehole dry upon completion. 12 13 14 15 16 17 18 19 20 DEPTH SCALE LOGGED: MD

PROJECT: CA0053577.5884

GTA-BHS 005

1:50

RECORD OF BOREHOLE: BH102

SHEET 1 OF 2

LOCATION: N 4778845.05; E 431910.24

BORING DATE: June 23-24, 2025

DATUM: Geodetic

CHECKED: DB

SPT/DCPT HAMMER: MASS, 64kg DROP, 760mm DRILL RIG: Dietrich D50 HAMMER TYPE: AUTOMATIC DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ BLOWS/0.3m NUMBER TYPE STANDPIPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH OW. Wp -GRAIN SIZE DISTRIBUTION (%) (m) GROUND SURFACE GR SA SI CL 207.74 ASPHALT (150 mm) 0.00 FILL - SAND and GRAVEL, some silt; 0.15 brown; loose 0 SS 9 207.13 FILL - Sandy SILTY CLAY, trace gravel, 1B 0 with organics; brown grey; firm to very 2 SS 8 0 S:CLENTSITHE_MUNICIPALITY_OF_LAMBTON_SHORESIDECKER_CREEK_CULVERTI02_DATAIGINTIDECKER_CREEK_CULVERT.GPJ_GAL-MIS.GDT_8/5/25_MK_May_2025 3 SS 0 Hollow Stem Auger SS 3 $\bar{\Delta}$ 5 SS 9 0 6 SS 27 0 203.63 4.11 (CL-ML) Sandy CLAYEY SILT, grey; friable (RESIDUAL SOIL); hard SS 82/ 0.25 0 CHEM 202.86 Borehole continued on Record of Drillhole BH102 9 10 DEPTH SCALE LOGGED: MD

RECORD OF DRILLHOLE: **BH102** PROJECT: CA0053577.5884 SHEET 2 OF 2 LOCATION: N 4778845.05 ;E 431910.24 DRILLING DATE: June 23-24, 2025 DATUM: Geodetic DRILL RIG: Dietrich D50 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: London Soil Test Ltd. DRILLING RECORD NOTE: SYMBOLIC LOG For abbreviations, symbols and descriptions refer to LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY DEPTH SCALE METRES FLUSH RETURN RUN No. ELEV. PIEZOMETER DESCRIPTION DEPTH RECOVERY DISCONTINUITY DATA Diametra Point Loa Index (MPa) RACT INDEX PER R.Q.D. (m) TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION Cont'd from Record of Borehole BH102 202.86 Slightly weathered, grey, porous, medium strong LIMESTONE with calcite 202.59 5.15 Slightly weathered, grey, porous, medium strong SHALEY LIMESTONE UCS = 189.8 MPa (5.15 m -5.36 m) CON,PL,RO JN,PL,SM JN,PL,SM Slightly weathered, grey, porous, low strength SHALE JN,PL,RO - JN,PL,RO - JN,PL,RO - JN,PL,SM - CON,, Slightly weathered, grey, porous, medium strong SHALEY LIMESTONE 5.80 5.90 Hard Layer Grey, porous, extremely weak, low strength SHALE GTA-RCK 046 S.ICLIENTSITHE_MUNICIPALITY_OF_LAMBTON_SHORESIDECKER_CREEK_CULVERTI02_DATAIGINTIDECKER_CREEK_CULVERT.GPJ GAL-MISS.GDT 8/5/25 MK May 2025 Rotary Drill NQ Core 3 199.05 END OF DRILLHOLE Note(s): 1. Groundwater encountered at 3.05 m (Elev. 204.69 m) on June 23, 2025. 10 11 12 13 14

LOGGED: MD

CHECKED: DB

DEPTH SCALE

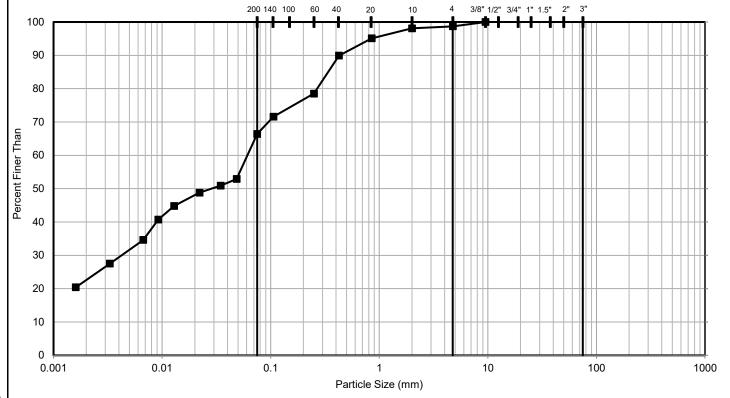
1:50

APPROXIMATE BOREHOLE LOCATION

REFERENCE(S)

1. PROJECTION: TRANSVERSE MERCATOR, DATUM: NAD83, COORDINATES SYSTEM: UTM ZONE 18, VERTICAL DATUM: CGVD28

CONSULTANT


YYYY-MM-DD	2025-07-22
DESIGNED	OC/JM
PREPARED	OC/JM
REVIEWED	MD
APPROVED	MD

GEOTECHNICAL EXPLORATION AND TESTING PROGRAM
DECKER CREEK CULVERT REPLACEMENT
THEDFORD, ONTARIO

BOREHOLE LOCATION PLAN

PROJECT NO.	CONTROL	REV.	FIGURE
CA0053577.5884	0001	Α	1

GRAIN SIZE DISTRIBUTION

EINEO (O'II. O)		SAND	GRA	VEL	0000150	DOLU DEDO	
FINES (Silt, Clay)	Fine	Medium	Coarse	Fine	Coarse	COBBLES	BOULDERS

	B	O and N at						
Symbol	Borehole Number	Sample Number	Depth (m)	Elevation (m)				
	BH-101	7	4.5 - 5.2	202.6 - 203.3				

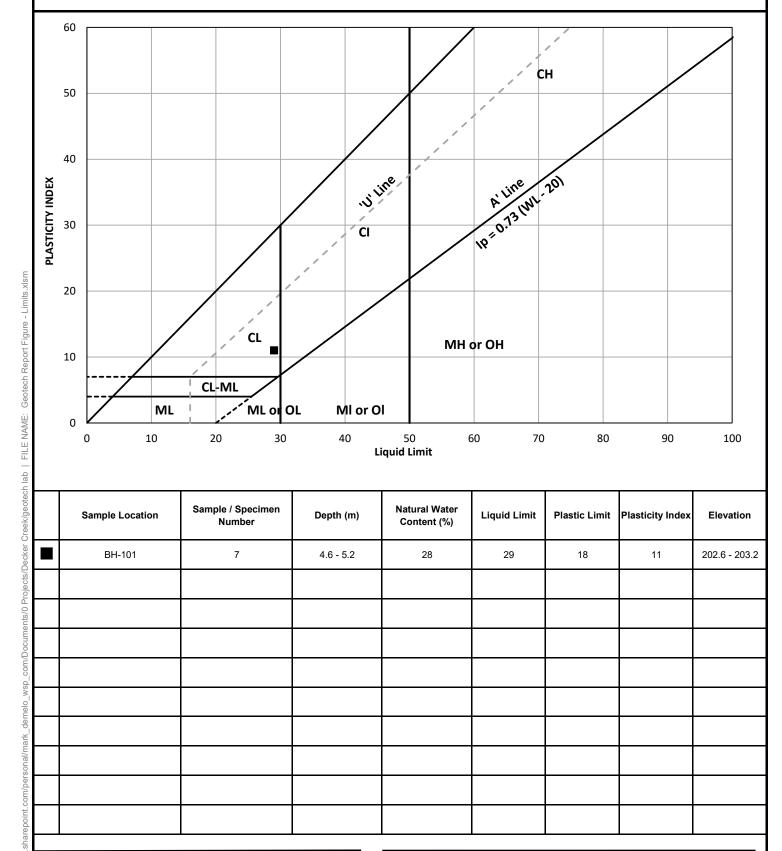
CLIENT

The Municipality of Lambton Shores 9577 Port Franks Road Thedford, ON N0M 2N0

CONSULTANT

YYYY-MM-DD	2025-07-25
DESIGNED	MD
PREPARED	MD
REVIEWED	PG
APPROVED	PG

PROJECT


GEOTECHNICAL EXPLORATION AND TESTING PROGRAM DECKER CREEK CULVERT REPLACEMENT THEDFORD, ONTARIO

TITLE

GRAIN SIZE DISTRIBUTION (CL) SANDY SILTY CLAY

PROJECT NO.	CONTROL	REV.	FIGURE
CA0053577.5884	0	0	2

PLASTICITY CHART

	Sample Location	Sample / Specimen Number	Depth (m)	Natural Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	Elevation
	BH-101	7	4.6 - 5.2	28	29	29 18		202.6 - 203.2
I.								
I								
I								

The Municipality of Lambton Shores 9577 Port Franks Road

Thedford, ON N0M 2N0 CONSULTANT

YYYY-MM-DD	2025-07-25
DESIGNED	MD
PREPARED	MD
REVIEWED	PG
APPROVED	PG

GEOTECHNICAL EXPLORATION AND TESTING PROGRAM DECKER CREEK CULVERT REPLACEMENT THEDFORD, ONTARIO

TITLE

PLASTICITY CHART (CL) SANDY SILTY CLAY

PROJECT NO. CONTROL FIGURE REV. CA0053577.5884 0 0

APPENDIX A

Rock Laboratory Test Results

DECKER CREEK CULVERT REPLACEMENT ROCK MECHANICS TESTING

ASTM D7012 METHOD C

WSP CANADA INC. 309 Exeter Road, Unit 1 London, Ontario, N6L 1C1

Attention: Mark Demelo, P. Eng. Geotechnical Engineer

PROJECT NO.: CA0053577.5884 DATE: 10-JULY-2025

WSP CANADA INC. 3450 HARVESTER ROAD, SUITE 100 BURLINGTON, ONTARIO, L7N 3W5

1 Introduction

WSP Canada Inc., a division of WSP Global Inc. ("WSP") is pleased to present the results of laboratory testing conducted on rock core samples provided by WSP Canada Inc. ("WSP"). The testing was conducted in WSP's rock mechanics laboratory located in Burlington, Ontario.

2 Methodology

A total of one (1) specimen was prepared and tested from core samples received in the WSP laboratory. Core sample was NQ drill size, nominally 47.6mm diameter. Testing was conducted in accordance with ASTM D7012, "Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures". Summary tables of the test results are attached as are the pre-test and post-test photographs.

All specimens were tested in their as-received moisture condition.

3 Results

The attached core data summary spreadsheet contains a comments column with a description of the failure mode for each specimen. A mention of "brittle failure" indicates that the specimen failed suddenly and completely with a rapid release of stored energy. The phrase "through intact rock" indicates that no portion of the main failure plane contained any pre-existing planes of weakness (veins, healed joints, foliation planes, etc.).

4 Disclaimer

This report has been prepared for the client named on the front of the report to be used subject to the terms and conditions of its contract with WSP. The data presented in this report has been performed based on the testing standards noted and in accordance with generally accepted rock engineering practices. WSP cannot be held responsible for any designs by others based on the data presented. Any other use of, or reliance on, this report by any third party is at that party's sole risk. No other warranty, expressed or implied, is made.

If you have any questions with regards to the results of the testing conducted, please do not hesitate to contact the undersigned at your convenience.

Yours truly,

WSP Canada Inc.

PREPARED BY

Saeed Rafieepour, M.Sc.

Senior Laboratory Technician

APPROVED BY

Kellen Shenton, P.Geo. Senior Geoscientist

sr/KS

wsp.com Page 2 of 4

WSP Canada Inc. Rock Mechanics Laboratory Test Data Summary

L	aboratory ID	Test Type	Borehole #	Sample ID	Depth from	Depth to	Length	Diameter	Mass	L/D	Density	Load	Sigma 1	Comments
					(m)	(m)	(mm)	(mm)	(g)		(kg/m ³)	(kN)	(MPa)	
	R33646	UCS	BH-101	UCS-1	5.25	5.35	100.27	47.18	478.8	2.13	2731	331.86	189.8	Brittle failure through intact rock.

Client: WSP Canada Inc.	Project No.: CA0053577.5884
Borehole and Sample ID: BH-101, UCS-1	
Depth: 5.25m – 5.35m	Laboratory ID: R33646

wsp.com Page 4 of 4

APPENDIX B

Rock Core Photographs

Run 1, BH-102, 4.88m to 6.34m

Run 2, BH-102, 6.34m to 8.08m

August 14, 2025 CA0053577.5884-R01-Rev0

Run 3, BH-102, 8.08m to 8.69m

Run 3 - Shale

August 14, 2025 CA0053577.5884-R01-Rev0

Weathered Shale

August 14, 2025 CA0053577.5884-R01-Rev0

APPENDIX C

Analytical Laboratory Test Results

CLIENT NAME: WSP CANADA INC.

309 EXETER ROAD, UNIT #1 LONDON, ON N6L1C1

(519) 652-0099

ATTENTION TO: Mark Demelo

PROJECT: CA0053577.5884

AGAT WORK ORDER: 25L314521

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

DATE REPORTED: Jul 03, 2025

PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 25L314521

PROJECT: CA0053577.5884

ATTENTION TO: Mark Demelo

SAMPLED BY:MD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Corrosivity Package

				•	on some years
DATE RECEIVED: 2025-06-26					DATE REPORTED: 2025-07-03
	SA	AMPLE DESC	CRIPTION:	BH-101-5	
		SAMF	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2025-06-23 12:00	
Parameter	Unit	G/S	RDL	6847147	
Chloride (2:1)	μg/g		2	96	
Sulphate (2:1)	μg/g		2	58	
pH (2:1)	pH Units		NA	8.21	
Electrical Conductivity (2:1)	mS/cm		0.005	0.301	
Resistivity (2:1) (Calculated)	ohm.cm		1	3320	
Redox Potential 1	mV		NA	207	
Redox Potential 2	mV		NA	176	
Redox Potential 3	mV		NA	168	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6847147 EC, pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter.

Redox potential measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry with exposure to oxidative/reduction conditions laboratory results may differ from

field measured results

Redox potential measurement in soil is quite variable and non reproducible due in part, to the general heterogeneity of a given soil. It is also related to the introduction of increased oxygen into the sample after extraction. The interpretation of soil redox potential should be considered in terms of its general range rather than as an absolute measurement.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED S NYME BASILY O CHEMIST AS A CHARTERED S NYME BASILY OF CHEMIST AS A CHARTER S NYME BASILY OF CHEMIST AS A CHARTER S NYME BASILY OF CHAR

Quality Assurance

CLIENT NAME: WSP CANADA INC.

AGAT WORK ORDER: 25L314521
PROJECT: CA0053577.5884

ATTENTION TO: Mark Demelo

SAMPLING SITE: SAMPLED BY:MD

	Soil Analysis														
RPT Date: Jul 03, 2025 DUPLICATE							REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured			Recovery	Lie	ptable nits	Recovery	منا ا	ptable nits
		ld					Value	Lower	Upper	,		Upper	,	Lower	Upper
Corrosivity Package															
Chloride (2:1)	6846225		8	8	NA	< 2	96%	70%	130%	98%	80%	120%	96%	70%	130%
Sulphate (2:1)	6846225		152	151	0.7%	< 2	100%	70%	130%	103%	80%	120%	101%	70%	130%
pH (2:1)	6846225		5.02	5.18	3.1%	NA	94%	80%	120%						
Electrical Conductivity (2:1)	6846225		0.242	0.226	6.8%	< 0.005	100%	80%	120%						
Redox Potential 1	6847147					NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

CHEMIST OF CHEMIST OF

Certified By:

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: CA0053577.5884

ATTENTION TO: Mark Demelo
SAMPLING SITE:

SAMPLED BY:MD

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	•		
Chloride (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH (2:1)	INOR 93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION
Redox Potential 1	INOR-93-6066	G200-20, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 2	INOR-93-6066	ASTM G200-20, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 3	INOR-93-6066	ASTM G200-20, SM 2580 B	REDOX POTENTIAL ELECTRODE

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use	Only
Work Order #:	251314521
Cooler Quantity:	1 SML
Arrival Temperatures:	8.3 8.5 8.6
Depot Temperatures:	5.316.51

Chain of Custody Recor	sample, plea	se use Drin	king Water Chain of	f Custody Form (potabl	le water o	consum	ed by hu	mans)			Arrival Depot	Temper Temper	atures atures:	8	3	6.5	18.10				
Report Information: Company: WSP Canad				(Please	gulatory Reque check all applicable boxes	5)	10.						Custody Seal Intact: Yes Notes: Notes								
	er Roc		() 1,		egulation 153/04	Table Indicate One			wer Use anitary	Sto	rm	Turnaround Time (TAT) Required:									
Phone: 519-331-42	Ondon	ON CO	nada		□Ind/Com □Res/Park □Agriculture	☐Ind/Com☐Res/Park☐Agriculture	ı	Region Prov. Water Quality Objectives (PWQO)			Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)							ys			
Reports to be sent to: 1. Email: 2. Email:	neloav	JSP.CO	OM		Soil Texture (Chcck One) Coarse Fine Regulation 558 CCME				Other					3 Business 2 Business Next Days Days Days OR Date Required (Rush Surcharges May Appl							
Project Information: Project: Site Location: Sampled By:	77.58	84			Is this submission for a Record of Site Condition (RSC)? Per No Report Guideline on Certificate of Analysis Yes No							Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CSR									
Sampled By: AGAT Quote #: Please note: If quotation number is not provided, client will be billed full price for analysis.				Leg	Legal Sample 🔲				0. Reg 153				O. Reg		0. Reg 558			GBE	(2)		
Invoice Information: Company: Contact: Address: Email: CAPayables	Involce	ill To Same: Ye	D.COW	GW O P S	Paint R Soil	D Sediment W Surface Water	Field Filtered - Metals, Hg, CrVI,	s & Inorganics	Is-□crvi,□Hg,□HwsB	F1-F4 PHCs		Aroclors 🗆	ation 406 Characterization Package etals. BTEX, F1-F4	ution 406 SPLP Rainwater Leach	III Disposal Characterization TCLP: ☐ M&I □ VOCS □ ABNS □ Braip □ Pre	☐ Moisture ☐ Su	013/14	PA Jo	Halle Hazardous or High Concentration		
Sample Identification	Sampled	Sampled	Containers	Matrix		Instructions	YZN	Ne	Me	BTE	PAH	PCB	PH. FC.	Regimens	TO PA	10			Bott		
1 BH-101-5 2	Jun 23	075120A	A		SollCorp	SN'ty Pac	rag	e													
3.	80 8M	AA Ph						-173	Ш	E OH											
4.		An Ph		, E.7/L								-	M. I	0.0	-						
5.		Ph An Ph						117				-		109	H						
7.	THE THEAT	Añ Ph												19	-				n = 11 -0		
8.		AA FIX	4											112				- 0	DI_ II - 2		
Q.		Añ	4					100.0					100						V = 1		

AM PM 10. 063635 410 AM 06,26,202 June 26,2025 2PM Page of

Pink Copy - Client | Yellow Copy - AGAT | White Copy- AGAT Samples Relinguished By (Print Name and Sam)

Document ID: DIV-78-1511-024

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth of www.esatlabs.com/terms and conditions unless otherwise agreed in a current written contractual document.

CLIENT NAME: WSP CANADA INC. 309 EXETER ROAD, UNIT #1 LONDON, ON N6L1C1 (519) 652-0099

ATTENTION TO: Mark Demelo PROJECT: CA0053577.5884

AGAT WORK ORDER: 25L321214

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

DATE REPORTED: Jul 21, 2025

PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 25L321214

PROJECT: CA0053577.5884

ATTENTION TO: Mark Demelo

SAMPLED BY:MD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Corrosivity Package

DATE RECEIVED: 2025-07-15 DATE REPORTED: 2025-07-21

BH-102-7

			PLE TYPE: SAMPLED:	Soil 2025-07-14 08:00	
Parameter	Unit	G/S	RDL	6892600	
Chloride (2:1)	μg/g		2	76	
Sulphate (2:1)	μg/g		2	363	
pH (2:1)	pH Units		NA	8.37	
Electrical Conductivity (2:1)	mS/cm		0.005	0.636	
Resistivity (2:1) (Calculated)	ohm.cm		1	1570	
Redox Potential 1	mV		NA	153	
Redox Potential 2	mV		NA	115	
Redox Potential 3	mV		NA	120	

SAMPLE DESCRIPTION:

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6892600 EC, pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter.

Redox potential measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry with exposure to oxidative/reduction conditions laboratory results may differ from

field measured results

Redox potential measurement in soil is quite variable and non reproducible due in part, to the general heterogeneity of a given soil. It is also related to the introduction of increased oxygen into the sample after extraction. The interpretation of soil redox potential should be considered in terms of its general range rather than as an absolute measurement.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED S NYME BASILY O CHEMIST AS A CHARTERED S NYME BASILY OF CHEMIST AS A CHARTER S NYME BASILY OF CHEMIST AS A CHARTER S NYME BASILY OF CHAR

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: CA0053577.5884

SAMPLING SITE:

AGAT WORK ORDER: 25L321214

ATTENTION TO: Mark Demelo

SAMPLED BY:MD

· · · · · · · · · · · · · · · · · · ·							•								
				Soi	l Ana	alysis	5								
RPT Date: Jul 21, 2025			DUPLICATE				REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX S		IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Lie	ptable nits	Recovery	1 1 1	eptable mits
. 7.1.7.1		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Corrosivity Package															
Chloride (2:1)	6890268		10	10	NA	< 2	100%	70%	130%	98%	80%	120%	97%	70%	130%
Sulphate (2:1)	6890268		14	14	1.2%	< 2	106%	70%	130%	102%	80%	120%	96%	70%	130%
pH (2:1)	6891306		9.60	9.82	2.3%	NA	90%	80%	120%						
Electrical Conductivity (2:1)	6891306		0.301	0.276	8.6%	< 0.005	97%	80%	120%						
Redox Potential 1	6892600					NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

CHARTERED S NIVINE BASILY O CHEMIST OF CHARTER S NIVINE BASILY O CHEMIST OF CHEMIST OF CHARTER S NIVINE BASILY O CHEMIST OF CHEMIST OF CHARTER S NIVINE BASILY O CHEMIST O CHARTER S NIVINE BASILY O CHEMIST O CHARTER S NIVINE BASILY O CHARTER S NIVINE BASILY O CHEMIST O CHARTER S NIVINE BASILY O CHEMIST O CHARTER S NIVINE BASILY O CHARTER

Certified By:

Method Summary

CLIENT NAME: WSP CANADA INC.

PROJECT: CA0053577.5884

ATTENTION TO: Mark Demelo
SAMPLING SITE:

SAMPLED BY:MD

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		·	
Chloride (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH (2:1)	INOR 93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION
Redox Potential 1	INOR-93-6066	G200-20, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 2	INOR-93-6066	ASTM G200-20, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 3	INOR-93-6066	ASTM G200-20, SM 2580 B	REDOX POTENTIAL ELECTRODE

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905,712.5100 Fax: 905,712.5122 webearth.agatlabs.com

l	Laboratory U	se Only
ı	Work Order #:	25 L32 1214

hain of Custody Record If this is a Drinking Water sample, plea					e use Drinking Water Chain of Custody Form (potable water consumed by humans)									rrival [*]		ty: ratures ratures:		3.8	4	1.4		3	
Report Information: Company: WSP Canad	a Inc.			(Please	Julatory Requ				100				Custody Seal Intact: Yes No Notes:										
Address: 309 Exeter	309 Exeter Road Unit I London, ON, NGL ICI SIG-331-4206 Fax:				Landen, ON, NGL 1C1 -519-331-4206 Fax:			Ta Ta	egulation 153/04 ble	Tableindicate One Ind/Com Res/Park Agriculture Regulation 558 CCME	Pro		Sewer Use Sanitary Storm									Next Day	Business
Project Information:		min in	188		Is this submission for a Record Report Guideline on										71			116 41		TAT	_		
Project: CAO0535 Site Location:	11.55	884			of Site Condition (RSC)? Certificate of Analysis ☐ Yes ☐ No ☐ Yes ☐ No							Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CSR											
Sampled By: AGAT Quote #:	PO:			Log	al Sample [1	200	0.1	Reg 153			1	-	O. Reg	_	0. Reg 558		7				(N/X	
Please note: If quotation number is Invoice Information:	not provided, client will	be billed full price for a		-	ai Sailipie L		s, crVI, DOC		_				Package		vater Leach □ Svocs □oc	ion TCLP:				-		ntration ()	
	nelo D	emall	CC om bec	GW O P S	Ground Water S Oil S Paint F Soil	D Sediment W Surface Water	Field Filtered - Metals, Hg.	s & Inorganics	1 3	F1-F4 PHCS		PCBs: Aroclors	Regulation 406 Characterization	Metals, BIEA, FL-F4	Regulation 406 SPLP Rainwater Leach mSPLP: Metals VOCs SVOCs	Disposal Character	Moisture Su	108			7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ially Hazardous or High Conc	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		ments/ Instructions	Y/N	Metals	Metals - [RIEX.	PAHS	POBs:	Reguli	EC, S	Regula	Landfill TCI P:						Potent	
1. BH-102-9	2025/07	14 800 AM	2		Corrosi	VII V Packoc	10																
2.		AM PM AM PM								-		-				-		\vdash	-				
3.	F 0-1120	PM AM PM														-		H					
4.		PM AM PM							-	+								H					
5. 6.		PM AM PM																		- 10		100	
7.		AM PM																					
8		- AM																				- 37	
9.		AN PN						III.							THE STATE OF							1 -0	
10.		AN PN		T-	TI '			PER		2													
11.		AN PN																					
Samples Relinquished By (Print Name and Sign):		Date	Time		Samples Received By (.1			D	ate		_ [& t	M				-07			
Samples Relinquished By (Print Name and Sign)		Duhe	Time.		Samoles Reinfield & C	Anderson Name and Sign):	n	1-b			0	ate C	52			157	2	P	age _	<u> </u>	of 1		
Samples Relinquished By (Print Name and Sign)		Detre	Time:		Samples Received By (Print Name and Sign):		an an one of the order design	FIRE AND IN 18 1	wtone	D	ate	Ō	CULTO	rime	N MANAGEM	N,	: T	- 1	67	798	4	

